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Abstract. We present recent developments on the single transverse spin physics, in particular,
the Collins mechanism contributions in various hadronic reactions, such as semi-inclusive hadron
production in DIS process, azimuthal distribution of hadron in high energy jet in pp collisions. We
will demonstrate that the transverse momentum dependent and collinear factorization approaches
are consistent with each other in the description of the Collins effects in the semi-inclusive hadron
production in DIS process.

There have been strong experimental interests on transverse spin physics around the
world, from the deep inelastic scattering experiments suchas the HERMES collabo-
ration at DESY, SMC and COMPASS at CERN, and Hall A and CLAS at JLab, the
proton-proton collider experiment from RHIC at Brookhaven, and the relevante+e−

annihilation experiment from BELLE at KEK. In particular, the single-transverse spin
asymmetries (SSA), defined as the spin asymmetries when we flip the transverse spin of
one of the hadrons in the scattering processes:A = (dσ(S⊥)− dσ(−S⊥))/(dσ(S⊥)+
dσ(−S⊥)) wheredσ is the differential cross section, has attract much attention. Great
progress has been made in the last few years in exploring the underlying physics for
the SSAs observed in various hadronic processes. In this talk, we will present, in par-
ticular, the recent developments on the Collins mechanism contribution to the SSAs in
hadronic processes. The transverse momentum dependent Collins fragmentation func-
tion describes the azimuthal hadron distribution correlated with the quark transverse
polarization vector [1]. When combining with the quark transversity distribution, it will
generate the SSAs in the semi-inclusive hadron production in deep inelastic scattering
(SIDIS) [1] and single inclusive hadron production inpp collisions [2]. It also con-
tributes to the azimuthal asymmetry in di-hadron production in e+e− annihilation pro-
cess [3]. Recent studies have found that the Collins function is universal, meaning that
it is the same in the above processes [2, 4, 5, 6, 7, 8]. This contribution is very impor-
tant not only because it is a significant contribution to the SSA observables in hadronic
processes, but also because its contribution is crucial to extract the quark transversity
distribution of nucleon, one of the three leading twist quark distributions [9] which is
weakly constrained [10, 11]. The experimental investigations of these physics have been
recently very active in SIDIS [12] ande+e− processes [13]. The TMD quark fragmen-



tation function are defined through the following matrix,
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wherea = 1,2,3 is a color index,α andβ are Dirac indices, andp⊥ is the transverse
momentum of the final state hadron with momentumPh relative to the fragmenting quark
k. The quark momentumk is dominated by its plus componentk+ = (k0 + kz)/

√
2,

and we haveP+
h = zk+ and~k⊥ = −~p⊥/z. For convenience, we have chosen a vector

n = (1+,0−,0⊥) which is along the plus momentum direction. The gauge linkLξ =
exp(−ig

∫ ∞
0 dλv ·A(λv+ξ )) is along the directionv conjugate ton [14, 15, 16]. The

leading order expansion of the above matrix leads to two fragmentation functions for a
scalar meson,
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where M is a mass scale chosen for convenience, and the second term defines the
Collins functionH⊥

1 . From the above equation, we can further define the transverse-

momentum moment of the Collins function:Ĥ(z)=
∫
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out the transverse momentum, the fragmentation function will only depend on the
longitudinal momentum fractionz of the quark carried by the final state hadron. It is
straightforward to show that this function can be written asa twist-three matrix element
of the fragmentation function,
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where we have chosen the gauge link in Eq. (1) going to+∞, andFµν is the gluon field
strength tensor and we have suppressed the gauge links between different fields and
other indices for simplicity. Since the Collins function isthe same under different gauge
links, we shall obtain the same result if we replace+∞ by−∞ in the above equation.

From the above definition, we can see thatĤ(z) involves derivative on the quark
field and the field strength tensor explicitly, and it belongsto more general twist-three
fragmentation functions [17]. For example, extending the above definition, we can define
a two-variable dependent twist-three fragmentation function as,
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2 . Similarly, we can define aF-type fragmentation
function by replacingDα

⊥ with F+α . However, theF andD types are related to each
other by using the equation of motion [18]. Therefore, they are not independent.



These functions are our starting point to formulate the Collins mechanism in the
collinear factorization approach. First, we can calculatethe transverse momentum de-
pendence of the Collins function in the perturbative regionfrom the twist-three frag-
mentation functionŝHD (ĤF) andĤ. To do this, we will have to not only calculate the
perturbative diagrams with gluon radiation, but also to perform the twist expansion and
take into account full contributions from the∂⊥ andA⊥ operators in the definitions of
ĤD andĤ at this order [18, 8]. An important check of the above result is its universality
property. Indeed, we find that our calculations are independent of the gauge link direc-
tion used in Eq. (1). In particular, we find that the gauge linkdoes not contribute to a pole
in the Feynman diagrams [8]. Therefore, the gauge links going to +∞ and−∞ lead to
the same results, and do not generate sign changes between different processes. This is
consistent with the universality argument for the Collins fragmentation function [5, 2].
Because of this, this calculation shall apply to all the processes the Collins function
involved. This clearly demonstrates its universality property.

Furthermore, we can also calculate the Collins contribution to the SSA in semi-
inclusive DIS,ep↑ → e′πX , and show that the TMD and collinear factorization ap-
proaches are consistent in the intermediate transverse momentum regionΛQCD≪Ph⊥≪
Q, whereΛQCD is the typical nonperturbative scale andPh⊥ is the transverse momen-
tum of the final state hadron. Again, the above definedĤD and Ĥ will be our starting
basis to calculate this contribution in the collinear factorization approach. Following the
same procedure as that in [19] for the Sivers effects, we find find that the single trans-
verse spin dependent differential cross section for the above process in the collinear
factorization approach can be reproduced by the TMD factorization for the same observ-
able [16] by using the large transverse momentum Collins fragmentation function, and
the known results for the quark transversity distributionh1 and the soft factor [19]. This
clearly demonstrates that in the intermediate transverse momentum region, the twist-
three collinear factorization approach and the TMD factorization approach provide a
unique picture for the Collins contribution to the SSA in thesemi-inclusive DIS [8].

Besides the above semi-inclusive DIS process, we can also study the Collins contri-
bution to the azimuthal asymmetric distribution of hadronsinside a high energy jet in
the transversely polarizedpp collision,

p(PA,S⊥)+ p(PB) → jet(PJ)+X → H(Ph)+X , (5)

where a transversely polarized proton with momentumPA scatters on another proton
with momentumPB, and produces a jet with momentumPJ. The three momenta of
PA, PB and PJ form the so-called reaction plane. Inside the produced jet,the hadrons
are distributed around the jet axis, where we define transverse momentumPhT relative
to the jet axis. The correlation betweenPhT and the polarization vectorS⊥ introduces
the Collins contribution to the single spin asymmetry in this process. Again, we can
perform the calculation of this asymmetry, and find that the same Collins function as that
in the semi-inclusive DIS. The key steps in the universalityderivation are the eikonal
approximation and the Ward identity. The eikonal approximation is valid when we
calculate the leading power contributions. The Ward identity ensure that when we sum
up the diagrams with all possible gluon attachments we shallget the eikonal propagator
from the gauge link in the definition of the fragmentation function. The most important



point to apply the Ward identity in the above analysis is thatthe eikonal propagator does
not contribute to the phase needed to generate a nonzero SSA.

This observation is very different from the SSAs associatedwith the parton distribu-
tions, where the eikonal propagators from the gauge link in the parton distribution defini-
tion play very important role. It is the pole of these eikonalpropagators that contribute to
the phase needed for a nonzero SSA associated with the naive-time-reversal-odd parton
distributions, which also predicts a sign difference for the quark Sivers function between
the SIDIS and Drell-Yan processes.

In conclusion, recent studies have demonstrated that the transverse momentum depen-
dent and collinear factorization approaches are consistent for for describing the Collins
contribution to the semi-inclusive DIS process in the intermediate transverse momentum
region. We have also demonstrated that the Collins fragmentation function calculated is
universal. This development shall stimulate similar calculations to the Collins contri-
butions to the SSAs in other processes, such as in hadron production in polarizedpp
scattering and di-hadron correlation ine+e− annihilation.
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